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N-k-ε Survivable Power System Design
Richard Li-Yang Chen, Amy Cohn, Neng Fan, Ali Pinar

Abstract—We consider the problem of designing (or aug-
menting) an electric power system such that it satisfies the
N-k-ε survivability criterion while minimizing total cost. The
survivability criterion requires that at least (1− ε) fraction of
the total demand can still be met even if any k (or fewer) of the
system components fail. We formulate this problem, taking into
account both transmission and generation expansion planning,
as a mixed-integer program. Two algorithms are designed and
tested on modified instances from the IEEE-30-Bus and IEEE-
57-Bus systems.

Index Terms—Long-term grid planning, contingency require-
ments, decomposition, separation oracle, implicit optimization.

I. INTRODUCTION

ACCORDING to the Transmission Planning Standard
(TPL-001-1, [1]), defined by the North American Electric

Reliability Corporation (NERC), power systems are required
to perform necessary adjustments under normal and con-
tingency conditions to ensure system reliability. If only a
single element is lost (N-1 contingency), the system must be
stable and all thermal and voltage limits must remain within
applicable rating. The loss-of-load is not allowed for N-1
contingency. In the case of multiple simultaneous failures (N-k
contingency), the system still has to meet the stable, thermal
and voltage limits, but planned or controlled loss-of-load is
allowed, to a limited degree.

Recently, optimization methods have been applied to N-
k contingency analysis for a large variety of vulnerabilities
within power systems. For example, line-vulnerability studies
can be found in [2], [3], [4], where optimization methods are
used to find small groups of lines whose failure can cause
severe blackout or large loss-of-load. N-k contingencies are
also considered in optimal power flow models [5], [6], [7] and
unit commitment problems [8]. The methods used in [4], [7],
[8] are all based on a bilevel programming approach, which
is the main method used for network inhibition/interdiction
problems.

For power system expansion problem with the added con-
sideration of contingencies, [9] proposed a multilevel mixed
integer programming model and solved it by tabu search. They
use this model to analyze the interaction between a power
system defender and a terrorist, who seeks to disrupt system
operations. For the transmission expansion problem, references
[10], [11], [12] considered the contingency criteria by stochas-
tic programming and integer programming approaches. The
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generation expansion problem has recently been studied in
[14], which pointed to many recent advances. Transmission
and generation expansion planning problems have also been
studied in the context of renewable energy integration, see,
e.g., [13].

In this paper, we consider the transmission and generation
expansion planning (TGEP) problem of designing (or aug-
menting) an electric power system of minimum total cost
that satisfies the N-k-ε survivability criterion. The survivability
criterion requires that a feasible power flow must still exist,
satisfying at least (1− ε) fraction of the total demand, even
after failures of up to k elements of the power system.
Considering the standards of NERC, for no-contingency state
and contingency states with k = 1, no loss-of-load is allowed;
for contingency states with k≥ 2, a small fraction of total load
demand can be shed.

We formulate a mixed-integer nonlinear program (MINLP)
to model TGEP along with multiple states representing all
the possible contingency scenarios and the corresponding flow
variables to ensure that (1− ε) fraction of the demand can
be met. The combinatorial number of contingency scenarios
imposes a substantial computational burden. To overcome
this challenge, we propose two cutting plane algorithms, one
based on a Benders decomposition method to check the load
satisfaction of each contingency scenario and another based
on a custom cutting plane algorithm, which solves a bilevel
separation problem to determine the worst-case loss-of-load
under any contingency with up to k failures. To test our models
and algorithms, numerical experiments are performed on the
IEEE-30-Bus system and the IEEE-57-Bus system.

The rest of this paper is organized as follows: In Section
II, the TGEP problem considering the full set of contingency
scenarios is formulated as a MINLP; Section III presents
two methods to solve this large-scale MINLP; In Section
IV, numerical experiments are performed on two IEEE test
systems; Section V concludes the paper.

II. MODELS

A. Nomenclature

Sets and indices

I Set of buses (indexed by i, j).
S(k) Set of ALL contingency states with k or fewer failures.
G Set of generating units.
Gi Set of generating units at bus i.
E Set of transmission elements.
E.i Set of transmission elements oriented into bus i.
Es

i. Set of transmission elements oriented out of bus i.
ie, je Tail/head (bus no.) of transmission element e = (ie, je).
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Parameters

Ce Investment cost of transmission element e.
Cg Investment cost of generating unit g.
Cp

g Marginal production cost of generating unit g.
Pg Maximum capacity of unit g.
Be Electrical susceptance of transmission element e.
Fe Capacity of transmission element e.
Di Electricity load demand at bus i.
σ Weighting factor to make investment cost and operating

cost comparable.
ε Fraction of load demand that can be shed.
k Contingency budget indicating the maximum number

of failed elements.
d̂s

g Binary parameter that takes value 1 if generating unit g
is part of the contingency state s and 0 otherwise.

d̂s
e Binary parameter that takes value 1 if transmission

element e is part of the contingency state s and 0
otherwise.

Decision Variables

xg Binary generation expansion variable that takes value
1 if generating unit g is added and 0 otherwise.

xe Binary transmission expansion variable that takes value
1 if transmission element e is added and 0 otherwise.

qs
i Loss of load at bus i for state s.

ps
g Power output of generating unit g for state s.

f s
e Power flow for transmission element e for state s.

θ s
i Phase angle of bus i for state s.

ds
g Binary variable that takes value 1 if generating unit g

is part of the contingency state s and 0 otherwise.
ds

e Binary variable that takes value 1 if transmission
element e is part of the contingency state s and 0
otherwise.

For a contingency state s ∈ S(k), d̂s
g = 1 and d̂s

e = 1 denote
generating unit g and transmission element e fails in state
s, respectively. Conversely, d̂s

g = 0 and d̂s
e = 0 denote that

both these two elements are available. Therefore, in the no-
contingency state (s = 0), d̂0

g = 0 and d̂0
e = 0 for all g ∈G and

e ∈ E.

B. TGEP Model

In the following model, we extend the standard TGEP
problem to include contingency constraints. Without loss of
generality, we treat all power system elements as candidates;
for an existing element, the investment cost (Ce,Cg) can simply
be set to 0 and the corresponding investment decision (xe,xg)
is fixed to be 1.

Once the planning decision is made, each newly planned
element is available in all contingencies scenario s ∈ S(k),
unless the it is part of a given contingency. Additionally, in
the no-contingency state (s = 0) no loss-of-load is allowed.
For contingency state s ∈ S(k)(s > 0), the total loss-of-load is
limited by the threshold ε . The MINLP model for TGEP is

formulated as follows,

min
x, f ,p,q,θ

∑
e∈E

Cexe + ∑
g∈G

Cgxg +σ ∑
g∈G

Cp
g p0

g (1a)

s.t. ∑
g∈Gs

i

ps
g + ∑

e∈Es
.i

f s
e − ∑

e∈Es
i.

f s
e +qs

i = Di, ∀i,s (1b)

Be
(
θ

s
ie −θ

s
je

)
xe(1− d̂s

e)− f s
e = 0, ∀e,s (1c)

−Fexe(1− d̂s
e)≤ f s

e ≤ Fexe(1− d̂s
e), ∀e,s (1d)

0≤ ps
g ≤ Pgxg(1− d̂s

g), ∀g,s (1e)

0≤ qs
i ≤ Di, ∀i,∀s ∈ S(k)\0 (1f)

∑
i∈I

qs
i ≤ ε ∑

i∈I
Di, ∀s ∈ S(k)\0 (1g)

q0
i = 0, ∀i (1h)

xg ∈ {0,1}, ∀g (1i)
xe ∈ {0,1}, ∀e (1j)

In all subsequent formulations, unless otherwise specified, the
indices i,g,e and s are elements of their corresponding sets,
i.e., i ∈ I,g ∈ G,e ∈ E and s ∈ S(k).

The objective (1a) is to minimize the total transmission and
generation investment cost plus the normalized operating cost
in the no-contingency state (s = 0).

Constraints (1b) are flow balance requirements for each
bus and contingency pair. For any transmission element that
is operational, Kirchhoff’s voltage law must be enforced by
(1c). Power flow on transmission element e is governed by
thermal capacity constraints (1d). For each contingency state,
the power output of a generating unit must satisfy the upper
bound given by (1e).

The set of all contingency states, S(k) includes the no-
contingency state s = 0. In the s = 0 state, all power system
elements are available, and no loss-of-load is allowed, as
limited by (1h).

For contingency state s > 0, constraints (1f) and (1g)
define the loss-of-load at each bus and across all possible
contingencies, respectively. For contingency state with one
failed element, no load shedding is allowed (i.e., ε = 0). For
states with two or more failed elements, ε > 0 and the bound
ε ∑i∈I Di limits the total loss-of-load in the system. Therefore,
for every contingency, at least (1−ε)∑i∈I Di of demand must
be satisfied.

Observe that constraints (1b)-(1f) are specific to a particular
contingency state, that is, for a given contingency state s, the
transmission and generation elements in the contingency have
zero capacity. In the no-contingency state s = 0, all invested
transmission elements and generating units are available for
the power flow problem.

III. SOLUTION APPROACHES

Replacing constraints (1c) by

Be
(
θ

s
ie −θ

s
je

)
− f s

e +Me(1− xe + d̂s
e)≥ 0, (2)

Be
(
θ

s
ie −θ

s
je

)
− f s

e −Me(1− xe + d̂s
e)≤ 0, (3)

∀e ∈ Es,s ∈ S(k),

where Me is sufficiently large constant, formulation (1) be-
comes a large-scale mixed integer linear program (MILP),
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which we refer as the extensive form (EF). EF has an ex-
tremely large number of variables and constraints because it
grows with the number of contingency states, which increases
exponentially with N and k. For large power systems and/or
a contingency k greater than one, EF can quickly become
computationally intractable. In the following sections, we
modify this formulation and present cutting plane algorithms
for solving the reformulated problem.

A. Benders Decomposition

We begin by presenting an alternative formulation with only
|G|+ |E| binary variables but possibly an extremely large
number of constraints. We use linear programming duality to
generate valid inequalities for the projection of the natural
formulation onto the space of the x variables. In essence, we
use a variant of Benders Decomposition in which we generate
valid inequalities corresponding to “feasibility” cuts.

For contingency state s > 0, given a capacity expansion
vector x̂ and a contingency state vector d̂s, we solve the
following linear program, denoted as the primal subproblem
PSP(x̂, d̂s), to determine an optimal power flow (OPF) that
minimizes the loss-of-load.

z(x̂, d̂s) = min
f ,p,q,θ

∑
i∈I

qs
i (4a)

s.t. (αs
i ) ∑

g∈Gs
i

ps
g + ∑

e∈Es
.i

f s
e − ∑

e∈Es
i.

f s
e +qs

i = Di, ∀i (4b)

(β̂ s
e ) −Be

(
θ

s
ie −θ

s
je

)
+ f s

e ≤Me(1− x̂e + d̂s
e), ∀e (4c)

(β̌ s
e ) Be

(
θ

s
ie −θ

s
je

)
− f s

e ≤Me(1− x̂e + d̂s
e), ∀e (4d)

(δ s
e ) f s

e ≤ Fex̂e(1− d̂s
e), ∀e (4e)

(ηs
e) − f s

e ≤ Fex̂e(1− d̂s
e), ∀e (4f)

(ζ s
g) 0≤ ps

g ≤ Pgx̂g(1− d̂s
g), ∀g (4g)

(λ s
i ) 0≤ qs

i ≤ Di, ∀i (4h)

The objective (4a) is to minimize loss-of-load by adjust-
ing the flow, phase angles and power generation, given the
prescribed capacity expansion decision x̂ and contingency d̂s.
Clearly, if z(x̂, d̂s) > ε ∑i∈I Di, there does not exist a feasible
power flow satisfying at least (1− ε) of total demand, and
if z(x̂, d̂s) ≤ ε ∑i∈I Di, a feasible power flow exists that can
satisfy at least (1− ε) of total demand.

The variables indicated in parenthesis on the left-hand-
side of the constraints in (4) denote the corresponding dual
variables. In turn, we can formulate the dual of this problem,
DSP(x̂, d̂s) as follows,

max
α,β̂ ,β̌ ,δ ,η ,ζ ,λ

∑
i∈I

Di(α
s
i +λ

s
i )+ ∑

e∈E
Me(1− x̂e + d̂s

e)(β̂
s
e + β̌

s
e )

+ ∑
e∈E

Fex̂e(1− d̂s
e)(δ

s
e +η

s
e)+ ∑

g∈G
Pgx̂g(1− d̂s

g)ζ
s
g ,

subject to constraints corresponding to primal variables
f , p,q,θ . Since PSP(x̂, d̂s) has a finite optimal solution (in the
worst case, all load will be shed), DSP(x̂, d̂s) also has a finite
optimal solution and by strong duality, the optimal solutions
coincide. Therefore, DSP(x̂, d̂s) has a finite optimal solution,

and in fact, an optimal extreme point. Thus we can reformulate
PSP(x̂, d̂s) as follows,

max
`=1,··· ,Ls ∑

i∈I
Di(α

s`
i +λ

s`
i )+ ∑

e∈E
Me(1− x̂e + d̂s

e)(β̂
s`
e + β̌

s`
e )

+ ∑
e∈E

Fexe(1− d̂s
e)(δ

s`
e +η

s`
e )+ ∑

g∈G
Pgxg(1− d̂s

g)ζ
s`
g , (5)

where Ls is the set of extreme points corresponding to the
polyhedron characterized by dual constraints based on (4) for
primal variables f , p,q,θ .

Observing that z(x̂, d̂s) ≤ ε ∑i∈I Di should be satisfied for
all s ∈ S(k) \ 0, the contingency feasibility conditions can be
defined as follows,

∑
i∈I

Di(α
s`
i +λ

s`
i )+ ∑

e∈E
Me(1− x̂e + d̂s

e)(β̂
s`
e + β̌

s`
e )

+ ∑
e∈E

Fex̂e(1− d̂s
e)(δ

s`
e +η

s`
e )+ ∑

g∈G
Pgx̂g(1− d̂s

g)ζ
s`
g (6)

≤ ε ∑
i∈I

Di, ∀`= 1, · · · ,Ls

Explicitly satisfying demand for the no-contingency state
and using (6) to satisfy the (1−ε) criterion for all contingency
states with k or fewer failures, we can reformulate (1) as:

min
x, f ,p,q,θ

∑
e∈E

Cexe + ∑
g∈G

Cgxg +σ ∑
g∈G

Cp
g p0

g (7a)

s.t. ∑
i∈I

Di(α
s`
i +λ

s`
i )+ ∑

e∈E
Me(1− xe + d̂s

e)(β̂
s`
e + β̌

s`
e )

+ ∑
e∈E

Fexe(1− d̂s
e)(δ

s`
e +η

s`
e )+ ∑

g∈G
Pgxg(1− d̂s

g)ζ
s`
g

≤ ε ∑
i∈I

Di, ∀`= 1, · · · ,Ls,s ∈ S(k)\0 (7b)

∑
g∈Gi

p0
g + ∑

e∈E.i

f 0
e − ∑

e∈Ei.

f 0
e = Di, ∀i ∈ I (7c)

Be
(
θ

0
ie −θ

0
je

)
− f 0

e +Me(1− xe + d̂0
e )≥ 0, ∀e ∈ E

(7d)

Be
(
θ

0
ie −θ

0
je

)
− f 0

e −Me(1− xe + d̂0
e )≤ 0, ∀e ∈ E

(7e)

−Fe(1− d̂0
e )≤ f 0

e ≤ Fe(1− d̂0
e ), ∀e ∈ E (7f)

0≤ p0
g ≤ Pgxg(1− d̂0

g), ∀g ∈ G (7g)

xg ∈ {0,1}, ∀g ∈ G (7h)
xe ∈ {0,1}, ∀e ∈ E (7i)

The number of constraints in formulation (1) grows ex-
ponentially with problem size, so we solve it via Benders
Decomposition (BD). At a typical iteration of BD, we consider
the relaxed master problem (RMP) (7), which has the same
objective as (1) but involves only a small subset of the
constraints in (1). We briefly outline BD below. For a detailed
treatment of BD please refer to [15].

Let j be the iteration counter and let the initial RMP
be problem (7) without any constraints (7b). Let x j be a
concatenation of the expansion variables (x j

e,x
j
g).
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Algorithm 1 Benders Decomposition (BD)
1: j← 0
2: solve RMP and let x j be the solution
3: for s = 1, · · · ,S(k)
4: if DSP(x j,s)> ε ∑i∈I Di
5: add feasibility cut (6) to RMP
6: end if
7: end for
8: if ∀ s = 1, · · · ,S(k), DSP(xk,s)≤ ε ∑i∈I Di
9: x j is optimal (EXIT)

10: else
11: j← j+1 and GOTO step 2
12: end if

By using a Benders reformulation, we are able to decom-
pose the extremely large MINLP (1) into a master problem
and multiple subproblems (one for each contingency state).
In theory, this enables us to solve larger instances, which
would not be possible by a direct solution of EF. However,
the extremely large number of contingency states makes direct
application of Benders ineffective for large power systems
and/or a non-trivial contingency budget (i.e., k > 1). In the
next section, we develop a custom cutting plane algorithm
that evaluates all possible contingency states implicitly using
a bilevel separation oracle.

B. Cutting Plane Algorithm

The size of most power systems in operations, with thou-
sands of generating units and transmission elements, may
preclude the direct solution of (1). Even using a decompo-
sition algorithm (e.g. BD) may not be feasible because each
contingency state must be considered explicitly. Our goal is
to instead use a separation oracle that implicitly evaluates
all contingency states and either identifies a violated one (a
contingency with k or less failures) or provides a certificate
that no such contingency state exists. If such a violated
contingency exists, we use this contingency to generate a
Benders cut, as described in the previous section, for the
RMP. If no such contingency exists, then the current capacity
expansion (x) is optimal and we terminate.

1) Power System Inhibition Problem: Given a capacity
expansion decision (xe,xg), the Power System Inhibition Prob-
lem (PSIP) can be used to determine the worst-case loss-of-
load under any contingency with k or fewer failures. In this
bilevel program, the upper level decisions (de,dg) correspond
to binary contingency selection decisions and the lower level
decisions ( f , p,q,θ) correspond to recourse power flow and
load shedding decisions relative to this given contingency.

Note that, whereas in the prior model d̂s was an input pa-
rameter, in this formulation, we are now selecting the elements
of the contingency, with ds becoming a decision variable.
For clarity of exposition, the superscript s corresponding to
variables f , p,q and θ have been removed. PSIP is given as

follows:

z(x̂) =max
d

min
f ,p,q,θ

∑
i∈I

qi (8a)

s.t. ∑
e∈E

de + ∑
g∈G

dg ≤ k, (8b)

(αi) ∑
g∈Gi

pg + ∑
e∈E.i

fe− ∑
e∈Ei.

fe +qi = Di, ∀i ∈ I (8c)

(β̂e) −Be
(
θie −θ je

)
+ fe ≤Me(1− x̂e +de), ∀e ∈ E (8d)

(β̌e) Be
(
θie −θ je

)
− fe ≤Me(1− x̂e +de), ∀e ∈ E (8e)

(δe) fe ≤ Fex̂e(1−de), ∀e ∈ E (8f)
(ηe) − fe ≤ Fex̂e(1−de), ∀e ∈ E (8g)

(ζg) 0≤ pg ≤ Pgx̂g(1−dg), ∀g ∈ G (8h)
(λi) 0≤ qi ≤ Di, ∀i ∈ I (8i)

The objective (8a) is to maximize the minimum loss-
of-load. Given a contingency state defined by (de,dg), the
objective of the power system operator (the inner minimization
problem) is to determine the optimal power flow such that
the loss-of-load is minimized. Constraint (8b) is a budget
constraint limiting the number of power system elements that
can be in the contingency. Constraints (8c) are standard flow
conservation constraints. Constraints (8d) and (8e) together
enforce Kirchhoff’s voltage law, if a transmission element is
active. Constraints (8f)-(8g) are constraints associated with the
capacity of each transmission element. Constraints (8h) limit
the maximum capacity of each generating unit. If a generating
unit g is NOT part of the contingency, that is dg = 0, then
the maximum capacity of the generating unit is enforced, if
the unit was added (xg = 1). Else, the power output of the
generating unit must be zero.

The upper-level decisions of this bilevel program are to
select a contingency, using the binary variables (de,dg), that
maximizes the subsequent loss-of-load in the lower-level prob-
lem.

Bilevel programs like (8) cannot be solved directly. One
approach is to reformulate the bilevel program by dualizing
the inner minimization problem. For fixed values of de,dg,
the inner minimization problem is a linear program that is
always feasible. By using duality of linear programs, addi-
tional variables and disjunctive constraints, we can obtain
equivalent an equivalent MILP formulation for (8), which
we call the Dual Power System Inhibition Problem (D-PSIP).
Bilevel programming approaches were used by [6], [7] to
perform vulnerability analysis of power systems.

Next, we outline an algorithm for optimally solving problem
(1) that combines a Benders decomposition with the aid of an
oracle given by (8), which acts as a separation subroutine. A
given capacity expansion (xe,xg) is optimal if the oracle cannot
find a contingency with k or fewer failures that results in a
loss-of-load above the allowable threshold ε ∑i∈I Di. Whenever
the oracle determines that the capacity expansion decision
(xe,xg) is not N-k-ε compliant, it returns a contingency (de,dg)
with ∑e∈E de +∑g∈G dg ≤ k. This new contingency, given by
(de,dg), results in a loss-of-load above the allowable threshold.

Let j be the iteration counter, and let the initial RMP be
problem (7) without any (7b) constraints and x j be the con-
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catenation of generation and transmission expansion variables.

Algorithm 2 Cutting Plane Algorithm (CPA)
1: j← 0
2: solve RMP and let x j be the solution
3: solve D-PSIP(x j) and let d j be the solution
4: if D-PSIP(x j)> ε ∑i∈I Di
5: solve DSP(x j,d j)
6: add feasibility cut (6) to RMP (7)
7: j← j+1 and GOTO step 2
8: else
9: x j is optimal (EXIT)

10: end if

At each iteration, either a contingency that results in loss-
of-load above the allowable threshold is identified and a
corresponding feasibility cut is generated and added to RMP,
or the algorithm terminates with the current solution being
optimal (if no failure contingency is found).

IV. NUMERICAL EXPERIMENTS

We implemented the above models and algorithms in C++
and CPLEX 12.1 via ILOG Concert Technology 2.9. All
experiments were run on a machine with four quad-core 2.93G
Xeon with 96G of memory. For the following computational
experiments, a single CPU and up to 8GB of RAM was
allocated. The gap was set to be 0.1% for CPLEX.

Our models and algorithms are tested on the IEEE-30-Bus
and IEEE-57-Bus systems [16]. For each power system, we
consider five different contingency budgets k. Specifically, we
limit the contingency cardinality k to be at most zero, one,
two, three, or four generating units or transmission elements
in the power system. Altogether, we consider 10 instances.

Table I allows us to compare the run times for the three
different approaches. For each of the 10 instances, m provides
the number of distinct contingencies. Initially for each test
system, we replicate a subset of existing generating units and
transmission lines to create a starting set of candidate ele-
ments. Using these candidate elements as a starting point, we
iteratively solve the PSIP problem for k = 4 and ε = 0.05 using
CPA. Using this process, we identify vulnerabilities in the
power system and introduce additional candidate generation
and transmission elements. We follow this method to create the
augmented the IEEE-30-Bus and IEEE-57-Bus test systems for
the computational experiments presented subsequently.

Table I provides the run time (in CPU seconds) for each
instance under the three different approaches. Note that the
first approach, the extensive form (EF), can only solve the
smallest of instances. This is because of the sheer size of
the problem, in which, for each contingency, a full DCOPF
problem must be embedded in the formulation. As the number
of contingencies grows, this quickly becomes intractable.

The second approach, BD, bypasses this problem via a
Benders decomposition, with corresponding delayed cut gener-
ation. However, this still suffers from the combinatorial growth
in the number of contingency scenarios – for each contingency,
a subproblem (DSP) must be solved to check for violated

TABLE I
RUN TIMES FOR DIFFERENT SOLUTION APPROACHES

Test Systems m k ε EF BD CPA
IEEE-30-Bus 0 0 0 0 0 0

152 1 0 76 1 2
> 11K 2 0.05 x 51 15
> 500K 3 0.10 x 2,382 78
> 21M 4 0.20 x x 117

IEEE-57-Bus 0 0 0 0 0 0
110 1 0 27 87 74
> 5K 2 0.05 x 513 15
> 200K 3 0.10 x x 23
> 5M 4 0.20 x x 24

feasibility cuts to add to the RMP. We see that larger problem
instances can be solved, relative to EF, but the BD approach
nonetheless cannot solve the largest problem instances.

In the CPA approach, we see that all instances of the
problem can be solved, in all cases in under two minutes
and frequently in only a few seconds. This is a result of the
combination of the strength of the Benders cuts, enabling the
problem to be solved in a very limited number of iterations,
and also the fact that we are able to implicitly evaluate the
contingencies in order to identify a violated contingency and
then quickly find its corresponding feasibility cut by solving
a single linear program (DSP).

Table II provides us with further evidence to support this.
For each instance, we see the total number of possible con-
tingency scenarios m and then the number of contingency
scenarios for which corresponding feasibility cuts were ac-
tually generated (this is the total number of iterations itr).
Clearly, it is a very tiny fraction of the possible number
of contingencies, which is critical to the tractability of the
approach. The remaining columns of this table breakdown
the total run time by time spent on the three components of
the algorithm – the restricted master problem (RMP), which
identifies a candidate network design x; the power system
inhibition problem (PSIP), which identifies a contingency that
cannot be overcome by the current network design; and the
dual subproblems (DSP), which generates the feasibility cuts.

TABLE II
CPA RUNTIME BREAKDOWN

Test Systems m k ε RMP PSIP DSP itr
IEEE-30-Bus 0 0 0 0 0 0 1

152 1 0 0 2 0 6
> 11K 2 0.05 0 14 0 8
> 500K 3 0.10 1 78 0 14
> 21M 4 0.20 1 116 0 19

IEEE-57-Bus 0 0 0 0 0 0 1
110 1 0 46 28 0 103
> 5K 2 0.05 7 14 0 26
> 200K 3 0.10 2 21 0 39
> 5M 4 0.20 1 23 0 39

V. CONCLUSION

In this paper, we proposed models for TGEP with N-k–
ε survivability constraints. Two algorithms are presented and
tested on standard IEEE test systems. Computational results
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show the proposed custom cutting plane algorithm (CPA),
using a bilevel separation program to implicit consider all ex-
ponential number of contingencies, significantly outperforms
a standard Benders decomposition.

The k or fewer failures considered in this paper are assumed
to happen simultaneously. In order to reflect practical operation
situations, where failures may happen consecutively, new mod-
els that consider timing between system element failures will
be needed. Additionally, unit commitment and de-commitment
is not considered in our current model. Future research should
address these considerations.
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